LUXMAN STEREO CASSETTE DECK ### 5K50M ### ALIGNMENT PROCEDURE ### HEADS HEIGHT ADJUSTMENT & AZIMUTH ADJUSTMENT - 1. Load the test tape and check the tape transport mechanism - (A) At 'Play' position, check that tape is not curled by two tape guides fitted with Erase & Playback Heads. - (B) Adjust heads' height to eliminate shift of tape to make tape horizontal by repetition of 'Play' and 'Stop' actions. - (C) Provisionally adjust azimuth and tilt of Playback head to obtain the highest level of output of both 333Hz and 10KHz signal recorded in the tape. - Load the test tape, MTT-150(400Hz 200nW/m), and adjust Playback Head to obtain the max. level of output, and at the same time, adjust to make waveforms of L & R channels in phase. - 3. Load test tape MTT-114(10KHz -10dB), and check that the output level is at max, and that the waveforms of L and R channels are in phase. Set the other side of the tape up, and adjust azimuth and tilt alternately so that both max. output level and waveforms in phase between L and R channels can be obtained. - 4. After the above adjustment, check to get proper tape transport adjusted as a final step by the lst test tape. ### P/B AMP DC BALANCE ADJ. Connect either of the oscilloscope, DC VTVM and multimeter to the test points, H Tpl C Tp2 for L ch., H Tp4 C Tp3 for R ch. on P/B AMP PC Board, and adjust the semifixed resistors, RT0la, RT0lb to obtain drift within. +50mV from the centre of meterneedle. Remember that the final DC balance adjustment is required after all the above-mentioned adjustments. ### P/B EQ AMP LEVEL ADJ: (TAPE POSITIONS) Load the test tape MTT-150(400Hz 200nW/m), and adjust the semifixed resistors, RTO3a, RTO3b on the P/B AMP PCB, to obtain. 575mVat Dolby PC board terminal 8(7) for L ch. and 4(3) for R ch. respectively, while setting at 'Tape. Monitor' position. Also check that the output level is at approximately 517mV while making the above adjustment. ### METER ADJ. After PB level adjustment, adjust the semifixed resistors RTOla, RTOlb on the SW PC board to obtain OdB display at the bar-graph peak level meter: Turn RTOla, RTOlb first to A position to obtain -ldB display, and then at the B position to obtain +ldB display, and finally turn both RTOla, RTOlb in the midway between A and B positions to obtain the precise OdB display. ### P/B EQ FREQUENCY ADJ. Load the test tape, MTT-216(3180mS + 120uS), and adjust the semifixed resistors, RT02a, RT02b on the P/B PC board to obtain frequency response in the range of 31.5Hz - 14KHz within +3dB. Moreover, adjust the variable resistors to reach the deviation within 0.4+1dB at 10KHz, and within +1.42dB at 14KHz. ### P/B DOLBY LEVER ADJ. Load the test tape, MTT-150(400Hz 200mW/m), and adjust RT01a, RT01b on the Dolby PC board to minimize the difference of the output levels within +0.05dB between Dolby Sw-on and Sw-off. At the same time, Check to obtain the output levels of 580mV at the check points a(L ch.), b(R ch.) respectively. ### CUE REV Load the test tape, MTT-150(400Hz 200nW/m), and confirm the output level is at around 580mV(-5dB-+3dB) with CUE or REVIES mode. ### 'P/B MUTE' CHECK Confirm that no hissing noise is generated from the LINE OUT when 'Play' is changed into 'Stop' mode. ### 'P/B HUM' CHECK Load quality bland tape (unrecorded), and check hum level at the output filtered off by means of 'CCIR' rule and without this filter respectively with 'Play' mode. ### LINE SOURCE MONITOR LEVEL (SOURCE POSITION) Setting Monitor SW to Source position, apply to LINE INPUT signal scurce of 400Hz with output impedance of 600 ohms, and fix INPUT LEVEL by means of attenuator to obtain output of 577mV at terminal 22(21) for L ch., and 15(14) for R ch. on Dolby PC board respectively. Confirm that input level is at 100mV-20mV, and at the same time output level is at about 517mV, while bargraph's indicating OdB. When the above adjustment is carried out. confirm that LINE VOL. OUTPUT VOL. are both at Max. positions, and that Dolby is switched-on. Also confirm that MIC VOL is at Min. position, and that the channel balance is within -0.5dB. ### REC DOLBY LEVEL ADJ. Load tape under Rec mode, and adjust semifixed resistors RT02a, RT02b to obtain output level of 580mV -0.2dB at check points, a(Lch), b(Rch) on the Dolby PC board by means of VTVM and/or oscilloscope, with the input level adjusted for the above-mentioned MONITOR LEVEL. Note that the Dolby switch has to be turned on. ### MPX FILTER ADJ. While constant input level with 19.00KHz is applied to the LINE INPUT, adjust to obtain min. level at the terminals NO.18 & 11 on the Dolby PCB. by turning the coils(red sides), LPFa, LPFb. - Levle should be more than -30dB at 400Hz - Dolby Sw is set to MPX ON position ### MIC MONITOR LEVEL (SOURCE POSITION) Set Monitor & to Source position, and apply signal source of 400Hz with output impedance of 600 ohms to LINE INPUT. And adjust INPUT LEVEL by means of attenuator to obtain output level of 577mV at the check points of the terminals Nos. 22(21) for L ch., Nos. 15(14) for R ch. on the Dolby PC board. Set the input level at D.25mV±0.05mV. In this case, MIC VOL, OUTPUT VOL are both at max. position, and LINE VOL is at min. position, ### SOURCE MONITOR FREQUENCY Check the following frequencies are obtained for L and R channels respectively: LIN 10 - 50kHz +3dB MIC 30 - 20kHz -3dB - Capacitance of shielded cord used to hook up deck and measuring equipment, is sithin 100pF - Output level is at 517mV ### MIX LOSS Confirm that output level fluctuates only between -ldB, when MIC VOL is turned from one end to the other, applying signal source to LINE INPUT, and vice versa when LINE VOL is turned from one end to the other, applying signal source to MIC INPUT. ### LEAD PHONE LEVEL Confirm that when LINE OUTPUT LEVEL is at 517mV, headphone level is at 90mV-9mV under 8-ohm loads. - Signal source is of 400Hz and Frequency response ranges 20-30KHz-3dB. ### PB Equalizer Frequency adjustment 1. First, set the test tape MTT216(3180mS+120uS), and adjust the RT02a and RT02b so that 6.3KHz against 315Hz is obtained at +0.5dB and -0dB. At this time, ensure that the 14KHz is set at between +1dB and +2dB. If it does not satisfy its limit, control it by parallel connection of CO1a and CO1b condensors. Please note that the value of Adjustment condensor is approx. 120pF. 2. Then, after 1, set the test tape MTT114, and ensure the output difference between the normal and CrO2 positions of the Equalizer switch is set within 3.5dB to 5.5dB. If the difference of the output level is set out of its limit, its re-adjustment of the tape touch or the replacing of the P-head is necessary. ### Ideal PB frequency response:- ### Bias current adjustment 1. Set the bias switch at the normal position and the bias volume at the center position. Moreover, connect the VTVM to the test point of the REC-PCB(L-ch H-TP2.C-TP1, R-ch H-TP4.C-TP3), then adjust the RT01a and RT01b of the PCB so that the bias current is 180mV. Please note that the test tape AC221 is indispensable and its test should be done in the actual tape running. Then, according to the above-mentioned method, adjust the RTO2a and RTO2b of the bias PCB so that the bias current is 290mV. Moreover, ensure that the bias current wave shows correct sine wave when the bias volume is turned to the maximum level. If the wave shows following shape or so, reduce bias current by RTO2a and RTO2b slightly, but the bias current should not be less than 270mV at the center position of bias volume. 3. As to the L and R channel balance adjustment, first, set the both channels to the peak bias point and then, reduce the higher bias current to meet the lower level. ### CAUSION The VTVM should be connected only to the test point and the other parts including of the body itself must be isolated from others. Also, use the shielded wire of lowest possible capacitance and inductance. Moreover, ensure the bias frequency is set within the limit of 105KHz-3KHz. Bias Current Normal 180mV Bias Current Ex 270mV - 290mV ### Ref. Level adjustment Fix the source level so that the 22 and 15 terminals of the dolby PCB is set at 577mV, and set the indicated test tape and adjust at dolby off and tape monitor position at recording mode. On each tape, obtain peak bias point, and adjust the variable resistors of the REC.PCB so that the output of the source and tape is set at the same level. | | Tape | VR | frequency | | | |--------|-------|-------------|-----------|--|--| | Normal | AC221 | RTO5a/RTO5b | 400Hz | | | | CrO2 | AC511 | RTO4a/RTO4b | t1 | | | | Metal | AC701 | RTO6a/PTO6b | tt | | | ### Rec. equalizer adjustment 1. By connecting the CO9a and CO9b in parallel with the indicated pins (L-ch: across AD1 and AD2, R-ch: across AD3 and AD4), adjust the peaking frequency to 23KHz+1KHz. The value of the CO9 is about 13002f which deviates according to the inductance of the recording head. As to the measuring level, the output level should be set to 52mV at 400KHz and the test point is to be set at H-TP5.C-TP6 for the L-ch and at H-TP7.C-TP8 for the R-ch, which please note. ### CAUTON The VTVM should be connected only to the test point and all other parts including the body itself should be insolated from other surroundings. 2. On each test tape, set the output level to 52mV at 400Hz, and adjust the trimmer pot so that the level of 10KHz is obtained within the limit of +1dB and - 0dB. At this time, ensure that the bias is set to the peak point at 400Hz and the azimuth is adjusted correctly. | | Tape | VR | Frequency | |--------|-------|-------------|----------------| | Normal | AC221 | RTO2a/RTO2b | 30Hz-17KHz+3dB | | CrO2 | AC511 | RT01a/RT01b | 30Hz-18KHz+3dB | | Metal | AC701 | RTO3a/RTO3b | 30Hz-20KHz+3dB | 4 Moreover, ensure that the metal OVU(-3dB of the standard 160nWb/m level) frequency response is set to 30Hz-11KHz+3dB ### Meter adjustment 1. After the adjustment of PB amplifier level, adjust the RTOla and RTOlb of Switch PCB so that the meter indicates "0" dot. Ensure that the "0" dot blinks at the "a" position of VR and "+1" blinks at the "b" position. Then, set the trimmer pot between "a" and "b" positions. 2. Ensure that the "-4" lights up when the bias switch is set at EX position. If not, put 470 ohms resistor in parallel with the 39K ohms resistor on the bias switch. ### BIAS TRAP ADJ. Load tape under REC mode, and adjust BIAS TRAP only after adjutment of BIAS itself. - a) Adjust TRAP a, TRAP b on P/B AMP PC board to obtain min. level of BIAS leakage at the OUTPUT(better than 45dB). - b) Turn on Dolby, and adjust TRAP a, TRAP b on DOLBY PCB to obtain min. level of BIAS leakage at the output. - In case the effect of BIAS TRAP adjustment can't be confirmed, disconnect BIAS TRAP circuit from P/B AMP, and adjust BIAS TRAP circuit alone. Then readjust BIAS TRAP after incorporating into the original circuit. ### TEST TONE ADJ. - a) Set TEST TONE SW. to PEAK BIAS position - 400Hz As adjustment, turn RT002 on the REC PC board to obtain display of bargraph up to -8 position, when 'peak bias' is obtained at recording/playback. Confirm that when peak bias in applied, PEAK BIAS lamp comes on and continues to light during variation of output level within -0.25dB as compared with its maximum level. - b) Set TEST TONE SW. to Azimuth position - 6KHz. As adjustment, turn RT001 on the REC PCB to obtain display of bargraph up to -8 position, while optimum 'azimuth' is procured at recording/playback. - Tapes used: (normal) AC221, (CR02) SA511, (metal) AC701 - c) REC CAL Get Rec. mode. Set test tone to 400Hz and MONITOR to "Source". Then adjust osc. level to obtain 577mV at the points, No. 22, 15 on the DOLBY PC board, while bargraph shows 0 position. - Both LINE VOL and MIC VOL are turned to min. position, and Dolby is on. ### COUNTER a) When a regular tape is loaded: 1) Confirm that the segments are reset to "0000", and that LED dot lamp is turned off just after loading tape into compartment. - 2) At whichever position the mode may Be, i.e., PLAY, Rec, FF or CUE, confirm that the counter counts upward under decimal system. - 3) At REW, REVIES modes, confirm that the counter counts downward under decimal system. - 4) In case Memory Sw. is on, confirm that Memory LED lamp comes on, and when changed to REW mode, confirm that deck will be automatically changed to STOP mode, when counter shows 9999-9997 after passing over 0000. However, confirm that mode is never changed to STOP while keeping depressing REW KEY. - 5) Load a C60 tape, and operate FF mode from the beginning of take-up until AUTO STOP functions at the end of tape. Then confirm that the counter shows "0000"-10 when AUTO STOP is realized after reginding of tape. Also check that the time required both for FF/REW for entire single side of C60 is 55-5 sec. - b) In case the Lux exclusive tape is loaded: - 1) Confirm the LED dot is turned off just after the tape is put into the compartment. Next, confirm that the same lamp comes on at any mode of PLAY, FF, REW, CUE, REVIEW. 2) Connect DC synchroscope to the pin No. 40 on DISPLAY PC board, and contirm that the following neat, trim waveform exceeding lV(peak to peak) can be obtained under PLAY mode. Take the same measurements under FF, REW modes, as well. In case output is below 1V with trim waveform, add either of resistors, 470, 220, 120 ohms in parallel with ROll(100 ohms) to obtain 1V peak to peak. - 3) Under PLAY mode, confirm that the counter counts up in terms of minutes and seconds, Also, check that counting is made with an interval of one second. - 4) Under FF, CUE modes, confirm that the counter counts up in terms of minutes and seconds. - 5) Under REW, REVIEW modes, confirm that the counter counts down in terms of minutes and seconds. - 6). When the MEMORY is switched on, confirm that mode is changed from REW to 'STOP' at display of 9959-9956 after passing over 0000. Confirm, however, that mode is never changed to STOP while REW KEY is kept depressed. - 7) With MEMORY off, fast forward the C60 tape from the beginning of take-up. Then rewind it after AUTO STOP, and check that the counter shows 0010-9950 when AUTO STOP functions. Also check that the time required both for FF/REW for the entire single side of C60 is 55-5 sec. ### PEAK BLAS Set TEST TONE SW to BIAS & DOLBY CAL position, adjust EQSW according to the type of tape used. BIAS SW is at Normal position. Output terminals(pin jacks) are connected to VTVM/Oscilloscope. - 1) At REC MODE, set MON. SW to Tape position, and turn BIAS VOL. to check that PEAK BIAS LED lamp comes on when max. output is obtained. - 2) Turn BIAS VOL clockwise, to obtain the output level lower by 0.25dB as compared to the peak point, and at this point adjust the semifixed resistor RT-001 to put off the LED lamp. - 3) Turn back BIAS VOL counter-clockwise, and confirm that LED comes on again, and is turned off at the point where the output is lower by 0.25dB on another side. ### CHECK POINTS - 1) DISPLAY PCB The deck is regarded as normal when the output of about 5V can be obtained at the pin No. 1 on ICO33(4558) on the Display PCB. When REC MUT is in operation, the output varies between 0-5 volts. - 2) Following all-wave rectifying waveform must be observed at the pin No. 1 on ICO32(4558). ### AZIMUTH Set TEST TONE SW to AZIMUTH position, under REC mode. VTVM and oscilloscope should be connected to output rerminals (Pin Jacks). - Monitoring VTVM/Oscilloscope, check that AZIMUTH LED lamps(2 pcs.) come on when the waveforms of L ch & R ch are in phase. - 2) When out of phase, turn the screw for Azimuth Adjustment in the head housing, and confirm that by rotation in the direction of the unlighted lamp, this lamp comes on. ### TIMER SW. - 1) Load a tape, and set TIMER SW to REC position. Check that the REC mode is obtained in about 2 seconds after the power is switched on. Also check that the TIMER REC LED lights up. - 2) Set TIMER SW to PLAY position, check that the deck is put into the PLAY mode when power is turned on. ### 1) DETACH AIR DAMPER ### MEAD BLOCK STROKE ADJUSTMENT LOOSEN THE FIXING SCREWS, A AND B OF PINCH SOL. SLIGHTLY AND FASTEN THEM SLIGHTLY AGAIN. AFTER THAT, PAT PINCH SOL. SO THAT THE STROKE CAN BE ADJUSTED. ### CAUSION SET AT PLAY MODE WHEN HEAD BLOCK ADJUSTMENT IS COMPLETED, FASTEN A AND B SCREWS TIGHTLY AND PUT BLUE ONTO THE HEADS OF SCREWS. ((AS PINCH SOL, GOES UP (OR DOWN), HEAD BLOCK GOES UP(OR DOWN)ACCORDINGLY, FIRST, AT THE CONDITION THAT THE PINCH SOL, GOES UP(GOES DOWN), AS PER THE ABOVE DRAWING, PUSH DOWN PINCH SOL AND SET THE HEAD BLOCK (3.3mm in CASE OF P.HEAD) AS PER THE INDICATION SHOWN IN THE NEXT PAGE. 2. E. HEAD STROKE ADJUST 30 MILLIMETER (3.0 g/cm) HEAD BLOCK STROKE ADJ. 1. PLAY HEAD STROKE > ADJUST 3.3 MILLIMETER (3.3 g/cm) (HEAD BASE 7530) - P1 FOR HEIGHT ADJUSTMENT OF P. HEAD - P2. FOR TILT ADJUSTMENT OF P HEAD - P3 FOR AZIMUTH ADJUSTMENT OF P. HEAD - R1 FOR HEIGHT ADJUSTMENT OF R HEAD - R₂ FOR TILT ADJUSTMENT OF R.HEAD - R3 FOR AZIMUTH ADJUSTMENT OF R. HEAD ### R.HEAD ADJUSTMENT CHECK THE TAPE RUNNING WITH TC TAPE. IFTHE TAPE RUNNING IS NOT STABLE, ADJUST THE SCREWS OF HEAD BLOCK, R1, R2, R3. ### P HEAD ADJUSTMENT CHECK THE TAPE RUNNING WITH TC TAPE. ENSURE THE TAPE IS NOT CURLED UP BY TAPE GUIDE. IF CURLED UP, "ADJUST THE SCREWS, P1, P2, P3. ### HEAD BLOCK TENTATIVE ADJUSTMENT ADJUST TAPE RUNNING BY THE ABOVE MENTIONED TO CASSETTE TAPE. ### E HEAD ADJUSTMENT ENSURE THAT THE TAPE IS NOT BE CURLED UP BY THE F. HEAD. IF IT IS CURLED UP, RE ADJUST WITH THE SPACER. SET THE M300GAUGE, AND CHECK IF THE M300 GAUGE CONTACTS/HITS THE E HEAD TAPE GUIDE. IF SO, ADJUST IT BT UTILIZING SPACERS, 3015 AND/OR 3014. ### R HEAD ADJUSTMENT ### AZIMUTH ADJUSTMENT SET M300 GAUGE AND ADJUST R3 SCREW SO THAT THE GAUGE M300 B AND THE R HEAD TRUCKS IS SET IN PARALLEL. ### TILT ADJUSTMENT SET M300 GAUGE AND ADJUST R1 SCREW SO THAT THE FACES OF THE R HEAD AND M300 B IS SET IN PARALLEL AS PER THE ABOVE DRAWING. ### TRUCK ADJUSTMENT SET M300 GAUGE AND LET THE M300 GAUGE AND R HEAD COME CLOSE TOGETHER AS PER THE DRAWING A, AND ADJUST THE SCREWS R1, R2 AND R3 SO THAT THE DISTANCE BETWEEN THE M300 GAUGE AND R HEAD IS SET AT ABOUT 0 2mm. ### AZIMUTH ADJUSTMENT SET M300 GAUGE, AND ADJUST THE SCREW P3 SO THAT AS PER THE DRAWING C, LINES K AND L MUST BE SET IN PARALLEL. ### TILT ADJUSTMENT SET M300 GAUGE AND ADJUST P1 SCREW SO THAT THE TRACKS OF THE GAUGE B AND P.HEAD IS SET IN PARALLEL. ### TRUCK ADJUSTMENT SET M300 GAUGE AND IT IS OK IF THE GAUGE B CAN PASS THRU THE P.HEAD TAPE GUIDE WITHOUT ANY CONTACT. BUT IF THEY CONTACT EACH OTHER, ADJUST THE SCREWS P1. P2. P3. ### HEAD MAIN ADJUSTMENT. AFTER THE COMPLETION OF THE HEAD PRE-ADJUSTMENT, MAKE FINAL DELICATE ADJUSTMENT WITH THE ACTUAL TAPE RUNNING. IN THIS CASE, THE POP-UP-CASE (W/O. GLASS DOOR) IS ATTACHED. NOTE THE FOLLOWING 3 TAPLS ARE USED FOR ITS ADJUSTMENT. - 1. MTT-114 (10KHz AZIMUTH TAPE) NORMAL - 2. AC -511 (REC PLAY TAPE) CRO2 3. AC -701 (REC PLAY TAPE) METAL 1. AT THE BEGINNING OF REWINDING OF THE MTT-114, MAKE P. HEAD AZIMUTH ADJUSTMENT WITH THE SCREW P3. (IT IS IDEAL THAT THE PHASES OF THE L AND R CHANNELS MEET EACH OTHER AT THE MAXIMUM OUTPUT LEVEL OF THE L AND R CHANNELS, BUT THE P. HEAD WHICH SHOWS THE WAVE OF FIG. 1 MUST BE REPLACED. FIG. 1. a.= IDEAL i b.= P.HEAD MUST BE REPLACED Ø≥45° ENSURE RIGHT PHASE OF THE L AND R CHANNELS AT 10KHz BY USING THE REVERSE OF THE TAPE MTT-114. IF THE RIGHT PHASE CAN NOT BE OBTAINED, CLOCKWISE OR COUNTER-CLOCKWISE THE SCREW P AND RE-ADJUST THE PHASE BY THE P3, AND RE-ADJUST RIGHT PHASE AT BOTH TAPE SIDES, A AND B BY THE SCREWS P2 AND P3. AT THE CONDITION SHOWN IN THE FIG.2, JUDGE THAT THE PHASE IS ADJUSTED CORRECTLY IN CASE OF THE $\emptyset \le 30^{\circ}$. Thus, continuously adjust to realize its condition. IF RIGHT PHASE AT BOTH TAPE SIDES CAN NOT BE OBTAINED EVENTUALLY, IT IS JUDGE THAT THE PRE-ADJUSTMENT IS IMPERFECTLY ALIGNED. RE-ADJUST THE HEIGHT OF THE P.HEAD BY P1 AND THE PHASE BY P2 AND P3. (NOTE: IN CASE OF RE-ADJUSTMENT OF THE P.HEAD HEIGHT BY P1, CONFIRM IF USING THE T.C. TAPE - TRANSPORT CASSETTE TAPE, THE TAPE IS CURLED UP BY THE P.HEAD GUIDE DUE TO THE CONTACT OF THE TAPE TO THE P.HEAD GUIDE. IF SO, RE-ADJUST P1 SCREW. ### THE ABOVE IS ALL FOR THE P.HEAD ADJUSTMENT. - CHANGE THE TAPE FROM MTT-114 TO AC511. AT REC. PLAY POSITION, CHECK THE PEAK BIAS AND ADJUST THE R.HEAD. - PIRST, PUT THE INPUT SIGNAL OF THE -20dB AT 10KHz, AND ADJUST THE AZIMUTH BY SCREW R3 AT MIDDLE PORTION OF THE TAPE(TAPE RUNNING). - PUT THE SIGNAL OF THE Odb AT 400HZ, MOVING THE R.HEAD IN PARALLEL BY THE SCREWS, R1, R2, R3, ADJUST SO AS TO OBTAIN THE MAXIMUM OUTPUT LEVEL OF THE BOTH CHANNELS. - USING THE TAPE A SIDE, ADJUST THE AZIMUM AT 10KHZ AND ENSURE THAT THE DIFFERENCE OF THE AZIMUTH BETWEEN THE TAPE A AND B SIDES IS WITHIN 90° RIGHT PHASE CONDITION IS IDEAL THOUGH. IF DIFFERENCE OF THE AZIMUTH BETWEEN THE TAPE A AND B SIDES EXCEEDS 90°, AS THE CASE OF THE P. HEAD, ADJUST THE TILT BY R2 AND THE PHASE BY THE R3. WHEN THE R. HEAD IS MOVED IN CASE OF R. HEAD ADJUSTMENT, IT IS PROVABLE THAT THE P. HEAD AZIMUTH MAY DEVIATE. SO, ENSURE AGAIN THE RIGHT AZIMUTH BY THE MIT-114. IN CASE OF THE DEVIATION OF THE PHASE BETWEEN THE TAPE A AND B SIDES AT MORE THAN 45°, RE-ADJUST THE P.HEAD AS PER THE INSTRUCTION OF 1 AND 2. ### USE MIT-114(10KHz) AZIMUTH TAPE FIG.3. RISING CHARACTERISTIC AT 10KHz. AFTER THE COMPLETION OF P.HEAD ADJUSTMENT, RE-ADJUST THE R.HEAD AS PER THE INSTRUCTIONS SHOWN IN THE 4 - 7, AND IF THE PERFORMANCE FULFIL THE CONDITION SHOWN IN THE FIG.4, THE R.HEAD ADJUSTMENT IS COMPLETED. FIG.4. RISING TIME CHARACTERISTICS AT 10KHz. AS TO THE START OF RECORDING FROM STOP POSITION AND FROM PAUSE POSITION, ENSURE THE PHASE IS SET AT THE . SAME CONDITION OR THE DIFFERENCE Ø 30° WHEN THE STABLE TAPE RUNNING IS OBTAINED. IF NOT, REPEAT THE ADJUSTMENT OF THE P. HEAD AND R. HEAD. BIAS OSC PCB (LUX PCM-014) | 15 PEAK BIAS
INSICATOR
AC-511 | 4. REC DOLSY LEVEL | 13. REC. CAL
ÁC 5// | IZ. TEST TONE
ACSII | II. SIAS TRAP
PB | IO. REC PLAY FREQUENCY NOTICE | q. معد المحدد التارات المحدد التارات المحدد | 8. BIAS CURRENT | T. MPX. FILTER | 6. IN PUT LEVEL | 3. 78 30187 (EVET | 4. PB _FREQUENCY MTT-216(3180+120,45) < NOTICE > | 3. METER SENSITIVITY MTT-150 <notice></notice> | 2. PB LEVEL
MTT-150
400Hz-2004W/ | 1. PB EO AMP. SC BALANCE (NOTICE) | ABJUSTMENT
TNAMTSULGA | Ē | |---|---------------------|---|------------------------|----------------------------------|---|---|-------------------------|---|-------------------|--|--|--|--|-------------------------------------|--------------------------|-------------------------------------| | Φιδ.Ρι-ΔΥ Ρς Β. RT-00 | 8 L 2 + 8 | 14 _ SW ECS.
14 _ RT024 _
R _ RT025 | 400 HZ REC PCB RTOOZ | R TRAPE | SEE ATTACHED PAPER 2-2. | LEVEL SEE ATTACHED PASSE R2-2 | T SEE ATTACHED PAPER2-1 | [년] - 501 B. 당근 (1) - 101 B. 당근 (1) - 101 B. 당근 (1) t. s. s | OSC
ATTENUATOR | 4 1018 - 14 1018 | 2 - 1° | RTOLD | 2 L 2 L | E L RIOIA | T ABJUSTMENT | | | OUT PUT
PEAK BIAS
INDICATOR | _ סטד פטד | H(c) 22(21) | METER. | CUT PUT | ATTACHED PAPER.2-2 | סטד פטד | מטד פטד | H(C) 18(300Y SLAW) | HIC 22.23 | OUT FUT | OUT PUT | XETER. | H(C) - 4(3) | H(c) TEI (TP2) | CHECK
POINT. | 1.5 | | PEAK LEVEL ± 0. ZSdB | (POLBY SW ON LEVEL) | 577, (at 400Hz) | -8ds ĐOT | MIN.
<-60dsm.
105xHz B-P-F | SEE ATTACHED | SEE ATTACHES | SEE ATTACHED PAPER 2-1 | -FRE(**1645)\$73>\\\\\\\\\ | 577, (at 400Hz) | (\$)LBY SWON LEVEL) = (\$)OLBY SWOFFLEVEL) | SEE ATTACHED | SEE ATTACHED
PAPER 2-3 | STELL (CENTER) | +SOMV(CENTER.) | SPECIFICATIONS | ADJUSTMENT | | REC
PLAY | REC
PLAT. | REC | REC. | REC
PLY | PLAY
PLAY | PLAY | REC
PLAY | PLAY | PLAY | PLAY | PLAY: | PLAY | PLAY | PAY. | MODE | | |
<u>₹</u> | HAX | MIN | Z
Z | I
Z | MAX | MAX | MAX | нах | MAX | <u> </u> | N 1 N | ゴス | | 조
문
 | NOLUME | SPECIFICATIONS | | エラ | 3 2 | ユ
え
え | MIN | <u>z</u>
Z | ::
Z | 7 2 | 3 | <u>ج</u>
ع | RIM | X
Z | HIN | 고 | ž | 7 7 | אוכ
אוכ | ATIONS | | X4X | MAX | МАX | мах | MAX | HAX
X | MAX. | MAX | мах | MAX | AA X | MAX | MA
X | MAX | MAX | NOTHE
TOT PUT | 2. KELE | |
TAPE | IAPE | SOURCE | TAPE | 나 | 17 nd | TAPE | TAP m | SOURCE | SOURCE | 74 KE | TAPE | TAPE | TAPE | TAPE | MONITOR | 2. < ELECTRICITY > | | 330 | 0N-0FF | 0, 7, | 뭐 | 0FF | 다
아
다 | 이 | ٥ ٢ | : oFE | 0
Z | הא-פדד | ·
다 | 340 | 055 | 340 | MS
Jenos | V | | Cr0z | Cr 02 | Cr0z | Croz | Х
Гі | EX
Cros | EX
Cr.05
Nov. | PERHAL
CS 02 | NORMAL | DORMAL | NORMAL | NORMAL | NORMAL | NORHAL | NORMAL | ₹ Ø
(Σ iii | NOTE 1. | | NORMAL | KORHAL | NORMAL | Nerhal | ml
X | EX
EX | EZ
PORPA | NOR HAL | NOR HAL | NORMAL | NORMAL | NORWAL | NORMAL | NORMAL | NORMAL | BIAS | E 1. OSC
2. GUTPU | | צבייטרידישאי | FEAK BAS | PEAK BAS
POSITION
at 400HZ | RESITION | HAX | PEAK BHS
RESITION
at 400HE | PSITION
AT400HZ | CENTER | Z | 2 . | Z. | 3 | 또 | X
Z | Z | S V 18 | 0SC Rg = 6001
OUTPUT LOAD = 47KD | | REC.CAL | 0F7 | REC.CAL | REC. CAL
AZIMUTH | 240 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 유 | 0두두 | 7 <u>3</u> 0 | | . o££ | OFF | 이번 | 0
뒤
뀌 | 075 | osc
osc | 7 2 | | 0
7
7 | 0FF | 0
Z | 130 | 940 | 0 = 3 0 | 0
F1
7 | 0
7)
71 | 0 F F | 140 | 0
타
타 | 0 F F. | 770 | ٥٣٢ | 055 | REC.CAL. | | # TAPE MACHINES sound reproduction. head, make it possible to realize our acclaimed "Realtime Processed" amps (5C50, 5L15, etc), which, in combination with Sendust playback circuits employ pure DC amps equalling those of our renowned LRS for ultimate fidelity sound reproduction. Both playback and recording Totally professional cassette deck comparable to reel-to-reel machines ## SPECIFICATIONS HEADS/Independent 3 heads, DRIVE MOTOR/3 motors, TAPE DRIVE/dual capstan, WOW & FLUTTER/no more than 0.03% W.R.M.S., S/N RATIO/better than 55dB (CrO₂ tape, Dolby off) better than 65dB (CrO₂ tape, Dolby on), FREQUENCY RESPONSE/30Hz — 18kHz (CrO₂ tape), OVERALL DISTORTION/no more than 1.2%, ERASING CAPABILITY/more than 65dB (LH tape), INPUT SENSITIVITY/100mV (line) 0.25mV (mic), OUT-PUT LEVEL/580mV (line in), ADDITIONAL FEATURES/REC. MUTE function, Variable Bias Control, 3-position Equalizer Selector, Azimuth Adjustment Facility with Indicator, Search Function, Tape Monitor Circuit, Peak Level Indicator with Peak Hold function, DOLBY* NR system, Oscillator (6kHz, 400Hz), Headphone Jack etc. DIMENSIONS/442(W) x 362(D) x 132(H)mm (17-13/32" x 14-1/4" x 5-3/16"), WEIGHT/12.5kgs (27.5 lbs.) Dolby is the trade mark of Dolby Laboratories, Inc.